编写两个用户态的程序来测试,第一个用于阻塞地读/dev/globalvar,另一个用于写/dev/globalvar。只有当后一个对/dev/globalvar进行了输入之后,前者的read才能返回。 读的程序为:
#include <sys/types.h>#include <sys/stat.h>#include <stdio.h>#include <fcntl.h>main(){ int fd, num; fd = open("/dev/globalvar", O_RDWR, S_IRUSR S_IWUSR); if (fd != - 1) { while (1) { read(fd, &num, sizeof(int)); //程序将阻塞在此语句,除非有针对globalvar的输入 printf("The globalvar is %d\n", num); //如果输入是0,则退出 if (num == 0) { close(fd); break; } } } else { printf("device open failure\n"); }}写的程序为:
#include <sys/types.h>#include <sys/stat.h>#include <stdio.h>#include <fcntl.h>main(){ int fd, num; fd = open("/dev/globalvar", O_RDWR, S_IRUSR S_IWUSR); if (fd != - 1) { while (1) { printf("Please input the globalvar:\n"); scanf("%d", &num); write(fd, &num, sizeof(int)); //如果输入0,退出 if (num == 0) { close(fd); break; } } } else { printf("device open failure\n"); }}
打开两个终端,分别运行上述两个应用程序,发现当在第二个终端中没有输入数据时,第一个终端没有输出(阻塞),每当我们在第二个终端中给globalvar输入一个值,第一个终端就会输出这个值,如下图:
第一个终端就会输出这个值
关于上述例程,我们补充说一点,如果将驱动程序中的read函数改为:
static ssize_t globalvar_read(struct file *filp, char *buf, size_t len, loff_t *off){ //获取信号量:可能阻塞 if (down_interruptible(&sem)) { return - ERESTARTSYS; } //等待数据可获得:可能阻塞 if (wait_event_interruptible(outq, flag != 0)) { return - ERESTARTSYS; } flag = 0; //临界资源访问 if (copy_to_user(buf, &global_var, sizeof(int))) { up(&sem); return - EFAULT; } //释放信号量 up(&sem); return sizeof(int);}
即交换wait_event_interruptible(outq, flag != 0)和down_interruptible(&sem)的顺序,这个驱动程序将变得不可运行。实际上,当两个可能要阻塞的事件同时出现时,即两个wait_event或down摆在一起的时候,将变得非常危险,死锁的可能性很大,这个时候我们要特别留意它们的出现顺序。当然,我们应该尽可能地避免这种情况的发生!
+还有一个与设备阻塞与非阻塞访问息息相关的论题,即select和poll,select和poll的本质一样,前者在BSD Unix中引入,后者在System V中引入。poll和select用于查询设备的状态,以便用户程序获知是否能对设备进行非阻塞的访问,它们都需要设备驱动程序中的poll函数支持。 驱动程序中poll函数中最主要用到的一个API是poll_wait,其原型如下: void poll_wait(struct file *filp, wait_queue_heat_t *queue, poll_table * wait); poll_wait函数所做的工作是把当前进程添加到wait参数指定的等待列表(poll_table)中。下面我们给globalvar的驱动添加一个poll函数: static unsigned int globalvar_poll(struct file *filp, poll_table *wait){ unsigned int mask = 0; poll_wait(filp, &outq, wait); //数据是否可获得? if (flag != 0) { mask = POLLIN POLLRDNORM; //标示数据可获得 } return mask;} 需要说明的是,poll_wait函数并不阻塞,程序中poll_wait(filp, &outq, wait)这句话的意思并不是说一直等待outq信号量可获得,真正的阻塞动作是上层的select/poll函数中完成的。select/poll会在一个循环中对每个需要监听的设备调用它们自己的poll支持函数以使得当前进程被加入各个设备的等待列表。若当前没有任何被监听的设备就绪,则内核进行调度(调用schedule)让出cpu进入阻塞状态,schedule返回时将再次循环检测是否有操作可以进行,如此反复;否则,若有任意一个设备就绪,select/poll都立即返回。 我们编写一个用户态应用程序来测试改写后的驱动。程序中要用到BSD Unix中引入的select函数,其原型为: int select(int numfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); 其中readfds、writefds、exceptfds分别是被select()监视的读、写和异常处理的文件描述符集合,numfds的值是需要检查的号码最高的文件描述符加1。timeout参数是一个指向struct timeval类型的指针,它可以使select()在等待timeout时间后若没有文件描述符准备好则返回。struct timeval数据结构为:
struct timeval { int tv_sec; /* seconds */ int tv_usec; /* microseconds */ };
除此之外,我们还将使用下列API: FD_ZERO(fd_set *set)――清除一个文件描述符集; FD_SET(int fd,fd_set *set)――将一个文件描述符加入文件描述符集中; FD_CLR(int fd,fd_set *set)――将一个文件描述符从文件描述符集中清除; FD_ISSET(int fd,fd_set *set)――判断文件描述符是否被置位。
下面的用户态测试程序等待/dev/globalvar可读,但是设置了5秒的等待超时,若超过5秒仍然没有数据可读,则输出"No data within 5 seconds":
#include <sys/types.h>#include <sys/stat.h>#include <stdio.h>#include <fcntl.h>#include <sys/time.h>#include <sys/types.h>#include <unistd.h>main(){ int fd, num; fd_set rfds; struct timeval tv; fd = open("/dev/globalvar", O_RDWR, S_IRUSR S_IWUSR); if (fd != - 1) { while (1) { //查看globalvar是否有输入 FD_ZERO(&rfds); FD_SET(fd, &rfds); //设置超时时间为5s tv.tv_sec = 5; tv.tv_usec = 0; select(fd + 1, &rfds, NULL, NULL, &tv); //数据是否可获得? if (FD_ISSET(fd, &rfds)) { read(fd, &num, sizeof(int)); printf("The globalvar is %d\n", num); //输入为0,退出 if (num == 0) { close(fd); break; } } else printf("No data within 5 seconds.\n"); } } else { printf("device open failure\n"); }}
开两个终端,分别运行程序:一个对globalvar进行写,一个用上述程序对globalvar进行读。当我们在写终端给globalvar输入一个值后,读终端立即就能输出该值,当我们连续5秒没有输入时,"No data within 5 seconds"在读终端被输出,如下图:
"No data within 5 seconds"在读终端被输出
(出处:http://www.sheup.com)