当前位置:Linux教程 - Linux综合 - 浅谈Linux环境下的高级隐藏技术

浅谈Linux环境下的高级隐藏技术

  隐藏技术在计算机系统安全中应用十分广泛,尤其是在网络攻击中,当攻击者成功侵入一个系统后,有效隐藏攻击者的文件、进程及其加载的模块变得尤为重要。本文将讨论Linux系统中文件、进程及模块的高级隐藏技术,这些技术有的已经被广泛应用到各种后门或安全检测程序之中,而有一些则刚刚起步,仍然处在讨论阶段,应用很少。    1.隐藏技术  1.1.Linux下的中断控制及系统调用    Intel x86系列微机支持256种中断,为了使处理器比较容易地识别每种中断源,把它们从0~256编号,即赋予一个中断类型码n,Intel把它称作中断向量。    Linux用一个中断向量(128或者0x80)来实现系统调用,所有的系统调用都通过唯一的入口system_call来进入内核,当用户动态进程执行一条int 0x80汇编指令时,CPU就切换到内核态,并开始执行system_call函数,system_call函数再通过系统调用表sys_call_table来取得相应系统调用的地址进行执行。系统调用表sys_call_table中存放所有系统调用函数的地址,每个地址可以用系统调用号来进行索引,例如sys_call_table[NR_fork]索引到的就是系统调用sys_fork()的地址。    Linux用中断描述符(8字节)来表示每个中断的相关信息,其格式如下:    偏移量31….16  一些标志、类型码及保留位  段选择符      偏移量15….0    所有的中断描述符存放在一片连续的地址空间中,这个连续的地址空间称作中断描述符表(IDT),其起始地址存放在中断描述符表寄存器(IDTR)中,其格式如下:    32位基址值  界限    其中各个结构的相应联系可以如下表示:    通过上面的说明可以得出通过IDTR寄存器来找到system_call函数地址的方法:根据IDTR寄存器找到中断描述符表,中断描述符表的第0x80项即是system_call函数的地址,这个地址将在后面的讨论中应用到。  1.2.Linux 的LKM(可装载内核模块)技术    为了使内核保持较小的体积并能够方便的进行功能扩展,Linux系统提供了模块机制。模块是内核的一部分,但并没有被编译进内核,它们被编译成目标文件,在运行过程中根据需要动态的插入内核或者从内核中移除。由于模块在插入后是作为Linux内核的一部分来运行的,所以模块编程实际上就是内核编程,因此可以在模块中使用一些由内核导出的资源,例如Linux2.4.18版以前的内核导出系统调用表(sys_call_table)的地址,这样就可以根据该地址直接修改系统调用的入口,从而改变系统调用。在模块编程中必须存在初始化函数及清除函数,一般情况下,这两个函数默认为init_module()以及clearup_module(),从2.3.13内核版本开始,用户也可以给这两个函数重新命名,初始化函数在模块被插入系统时调用,在其中可以进行一些函数及符号的注册工作,清除函数则在模块移除系统时进行调用,一些恢复工作通常在该函数中完成。    1.3.Linux下的内存映像    /dev/kmem是一个字符设备,是计算机主存的映像,通过它可以测试甚至修改系统,当内核不导出sys_call_table地址或者不允许插入模块时可以通过该映像修改系统调用,从而实现隐藏文件、进程或者模块的目的。    1.4.proc 文件系统    proc文件系统是一个虚拟的文件系统,它通过文件系统的接口实现,用于输出系统运行状态。它以文件系统的形式,为操作系统本身和应用进程之间的通信提供了一个界面,使应用程序能够安全、方便地获得系统当前的运行状况何内核的内部数据信息,并可以修改某些系统的配置信息。由于proc以文件系统的接口实现,因此可以象访问普通文件一样访问它,但它只存在于内存之中。    2.技术分析  2.1 隐藏文件    Linux系统中用来查询文件信息的系统调用是sys_getdents,这一点可以通过strace来观察到,例如strace ls 将列出命令ls用到的系统调用,从中可以发现ls是通过sys_getedents来执行操作的。当查询文件或者目录的相关信息时,Linux系统用sys_getedents来执行相应的查询操作,并把得到的信息传递给用户空间运行的程序,所以如果修改该系统调用,去掉结果中与某些特定文件的相关信息,那么所有利用该系统调用的程序将看不见该文件,从而达到了隐藏的目的。首先介绍一下原来的系统调用,其原型为:  int sys_getdents(unsigned int fd, strUCt dirent *dirp,unsigned int count)  其中fd为指向目录文件的文件描述符,该函数根据fd所指向的目录文件读取相应dirent结构,并放入dirp中,其中count为dirp中返回的数据量,正确时该函数返回值为填充到dirp的字节数。下图是修改后的系统调用hacked_getdents执行流程。     图 系统调用hacked_getdents执行流程  图中的hacked_getdents函数实际上就是先调用原来的系统调用,然后从得到的dirent结构中去除与特定文件名相关的文件信息,从而应用程序从该系统调用返回后将看不到该文件的存在。    应该注意的是,一些较新的版本中是通过sys_getdents64来查询文件信息的,但其实现原理与sys_getdents基本相同,所以在这些版本中仍然可以用与上面类似的方法来修改该系统调用,隐藏文件。  2.2 隐藏模块    上面分析了如何修改系统调用以隐藏特定名字的文件,在实际的处理中,经常会用模块来达到修改系统调用的目的,但是当插入一个模块时,若不采取任何隐藏措施,很容易被对方发现,一旦对方发现并卸载了所插入的模块,那么所有利用该模块来隐藏的文件就暴露了,所以应继续分析如何来隐藏特定名字的模块。Linux中用来查询模块信息的系统调用是sys_query_module,所以可以通过修改该系统调用达到隐藏特定模块的目的。首先解释一下原来的系统调用,原来系统调用的原型为:  int sys_query_module(const char *name, int which, void *buf, size_t bufsize , size_t *ret)  如果参数name不空,则访问特定的模块,否则访问的是内核模块,参数which说明查询的类型,当which=QM_MODULES时,返回所有当前已插入的模块名称,存入buff, 并且在ret中存放模块的个数,buffsize是buf缓冲区的大小。在模块隐藏的过程中只需要对which=QM_MODULES的情况进行处理就可以达到目的。修改后的系统调用工作过程如下:    1)调用原来的系统调用,出错则返回错误代码;  2)如果which不等于QM_MODULES,则不需要处理,直接返回。  3)从buf的开始位置进行处理,如果存在特定的名字,则将后面的模块名称向前覆盖该名字。  4)重复3),直到处理处理完所有的名字,正确返回。    2.3 隐藏进程    在Linux中不存在直接查询进程信息的系统调用,类似于ps这样查询进程信息的命令是通过查询proc文件系统来实现的,在背景知识中已经介绍过proc文件系统,由于它应用文件系统的接口实现,因此同样可以用隐藏文件的方法来隐藏proc文件系统中的文件,只需要在上面的hacked_getdents中加入对于proc文件系统的判断即可。由于proc是特殊的文件系统,只存在于内存之中,不存在于任何实际设备之上,所以Linux内核分配给它一个特定的主设备号0以及一个特定的次设备号1,除此之外,由于在外存上没有与之对应的i节点,所以系统也分配给它一个特殊的节点号PROC_ROOT_INO(值为1),而设备上的1号索引节点是保留不用的。通过上面的分析,可以得出判断一个文件是否属于proc文件系统的方法:    1)得到该文件对应的inode结构dinode;  2)if (dinode->i_ino == PROC_ROOT_INO && !MAJOR(dinode->i_dev) && MINOR(dinode->i _dev) == 1) {该文件属于proc文件系统}    通过上面的分析,给出隐藏特定进程的伪代码表示:    hacket_getdents(unsigned int fd, struct dirent *dirp, unsigned int count)  {    调用原来的系统调用;    得到fd所对应的节点;    if(该文件属于proc文件系统&&该文件名需要隐藏)  {从dirp中去掉该文件相关信息}  }  2.4 修改系统调用的方法    现在已经解决了如何修改系统调用来达到隐藏的目的,那么如何用修改后的系统调用来替换原来的呢?这个问题在实际应用中往往是最关键的,下面将讨论在不同的情况下如何做到这一点。    (1)当系统导出sys_call_table,并且支持动态的插入模块的情况下:    在Linux内核2.4.18版以前,这种内核配置是非常普遍的。这种情况下修改系统调用非常容易,只需要修改相应的sys_call_table表项,使其指向新的系统调用即可。下面是相应的代码:    int orig_getdents(unsigned int fd, struct dirent *dirp, unsigned int count)  int init_module(void)  /*初始化模块*/  {  orig_getdents=sys_call_table[SYS_getdents];    //保存原来的系统调用  orig_query_module=sys_call_table[SYS_query_module]  sys_call_table[SYS_getdents]=hacked_getdents;  //设置新的系统调用  sys_call_table[SYS_query_module]=hacked_query_module;  return 0; //返回0表示成功  }  void cleanup_module(void)  /*卸载模块*/  {  sys_call_table[SYS_getdents]=orig_getdents;    //恢复原来的系统调用  sys_call_table[SYS_query_module]=orig_query_module;  }    (2)在系统并不导出sys_call_table的情况下:    linux内核在2.4.18以后为了安全起见不再导出sys_call_table符号,从而无法直接获得系统调用表的地址,那么就必须找到其
[1] [2] 下一页 

(出处:http://www.sheup.com)


上一页 [1] [2]