本文介绍了在Linux环境下的socket编程常用函数用法及socket编程的一般规则和客户/服务器模型的编程应注意的事项和常遇问题的解决方法,并举了具体代码实例。要理解本文所谈的技术问题需要读者具有一定C语言的编程经验和TCP/IP方面的基本知识。要实习本文的示例,需要Linux下的gcc编译平台支持。
Socket定义
网络的Socket数据传输是一种特殊的I/O,Socket也是一种文件描述符。Socket也具有一个类似于打开文件的函数调用—Socket(),该函数返回一个整型的Socket描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。常用的Socket类型有两种:流式Socket—SOCK_STREAM和数据报式Socket—SOCK_DGRAM。流式是一种面向连接的Socket,针对于面向连接的TCP服务应用;数据报式Socket是一种无连接的Socket,对应于无连接的UDP服务应用。
Socket编程相关数据类型定义
计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。Internet上数据以高位字节优先顺序在网络上传输,所以对于在内部是以低位字节优 先方式存储数据的机器,在Internet上传输数据时就需要进行转换。
我们要讨论的第一个结构类型是:struct sockaddr,该类型是用来保存socket信息的:
struct sockaddr {
unsigned short sa_family; /* 地址族, AF_xxx */
char sa_data[14]; /* 14 字节的协议地址 */ };
sa_family一般为AF_INET;sa_data则包含该socket的IP地址和端口号。
另外还有一种结构类型:
struct sockaddr_in {
short int sin_family; /* 地址族 */
unsigned short int sin_port; /* 端口号 */
struct in_addr sin_addr; /* IP地址 */
unsigned char sin_zero[8]; /* 填充0 以保持与struct sockaddr同样大
小 */
};
这个结构使用更为方便。sin_zero(它用来将sockaddr_in结构填充到与struct sockaddr同样的长度)应该用bzero()或memset()函数将其置为零。指向sockaddr_in 的指针和指向sockaddr的指针可以相互转换,这意味着如果一个函数所需参数类型是sockaddr时,你可以在函数调用的时候将一个指向sockaddr_in的指针转换为指向sockaddr的指针;或者相反。sin_family通常被赋AF_INET;sin_port和sin_addr应该转换成为网络字节优先顺序;而sin_addr则不需要转换。
我们下面讨论几个字节顺序转换函数:
htons()--""Host to Network Short"" ; htonl()--""Host to Network Long""
ntohs()--""Network to Host Short"" ; ntohl()--""Network to Host Long""
在这里, h表示""host"" ,n表示""network"",s 表示""short"",l表示 ""long"" 。
打开socket 描述符、建立绑定并建立连接
socket函数原型为:
int socket(int domain, int type, int protocol);
domain参数指定socket的类型:SOCK_STREAM 或SOCK_DGRAM;protocol通常赋值“0”。Socket()调用返回一个整型socket描述符,你可以在后面的调用使用它。
一旦通过socket调用返回一个socket描述符,你应该将该socket与你本机上的一个端口相关联(往往当你在设计服务器端程序时需要调用该函数。随后你就可以在该端口监听服务请求;而客户端一般无须调用该函数)。 Bind函数原型为 :
int bind(int sockfd,struct sockaddr *my_addr, int addrlen);
Sockfd是一个socket描述符,my_addr是一个指向包含有本机IP地址及端口号等信息的sockaddr类型的指针;addrlen常被设置为sizeof(struct sockaddr)。
最后,对于bind 函数要说明的一点是,你可以用下面的赋值实现自动获得本机IP地址和随机获取一个没有被占用的端口号:
my_addr.sin_port = 0; /* 系统随机选择一个未被使用的端口号 */
my_addr.sin_addr.s_addr = INADDR_ANY; /* 填入本机IP地址 */
通过将my_addr.sin_port置为0,函数会自动为你选择一个未占用的端口来使用。同样,通过将my_addr.sin_addr.s_addr置为INADDR_ANY,系统会自动填入本机IP地址。Bind()函数在成功被调用时返回0;遇到错误时返回“-1”并将errno置为相应的错误号。另外要注意的是,当调用函数时,一般不要将端口号置为小于1024的值,因为1~1024是保留端口号,你可以使用大于1024中任何一个没有被占用的端口号。
Connect()函数用来与远端服务器建立一个TCP连接,其函数原型为:
int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);
Sockfd是目的服务器的sockt描述符;serv_addr是包含目的机IP地址和端口号的指针。遇到错误时返回-1,并且errno中包含相应的错误码。进行客户端程序设计无须调用bind(),因为这种情况下只需知道目的机器的IP地址,而客户通过哪个端口与服务器建立连接并不需要关心,内核会自动选择一个未被占用的端口供客户端来使用。
Listen()——监听是否有服务请求
在服务器端程序中,当socket与某一端口捆绑以后,就需要监听该端口,以便对到达的服务请求加以处理。
int listen(int sockfd, int backlog);
Sockfd是Socket系统调用返回的socket 描述符;backlog指定在请求队列中允许的最大请求数,进入的连接请求将在队列中等待accept()它们(参考下文)
。Backlog对队列中等待服务的请求的数目进行了限制,大多数系统缺省值为20。
当listen遇到错误时返回-1,errno被置为相应的错误码。
故服务器端程序通常按下列顺序进行函数调用:
socket(); bind(); listen(); /* accept() goes here */
accept()——连接端口的服务请求。
当某个客户端试图与服务器监听的端口连接时,该连接请求将排队等待服务器accept()它。通过调用accept()函数为其建立一个连接,accept()函数将返回一个新的socket描述符,来供这个新连接来使用。而服务器可以继续在以前的那个 socket上监听,同时可以在新的socket描述符上进行数据send()(发送)和recv()(接收)操作:
int accept(int sockfd, void *addr, int *addrlen);
sockfd是被监听的socket描述符,addr通常是一个指向sockaddr_in变量的指针,该变量用来存放提出连接请求服务的主机的信息(某台主机从某个端口发出该请求);addrten通常为一个指向值为sizeof(struct sockaddr_in)的整型指针变量。错误发生时返回一个-1并且设置相应的errno值。
Send()和recv()——数据传输
这两个函数是用于面向连接的socket上进行数据传输。
Send()函数原型为:
int send(int sockfd, const void *msg, int len, int flags);
Sockfd是你想用来传输数据的socket描述符,msg是一个指向要发送数据的指针。
Len是以字节为单位的数据的长度。flags一般情况下置为0(关于该参数的用法可参照man手册)。
char *msg = ""Beej was here!""; int len, bytes_sent; ... ...
len = strlen(msg); bytes_sent = send(sockfd, msg,len,0); ... ...
Send()函数返回实际上发送出的字节数,可能会少于你希望发送的数据。所以需要对send()的返回值进行测量。当send()返回值与len不匹配时,应该对这种情况进行处理。
recv()函数原型为:
int recv(int sockfd,void *buf,int len,unsigned int flags);
Sockfd是接受数据的socket描述符;buf 是存放接收数据的缓冲区;len是缓冲的长度。Flags也被置为0。Recv()返回实际上接收的字节数,或当出现错误时,返回-1并置相应的errno值。
Sendto()和recvfrom()——利用数据报方式进行数据传输
在无连接的数据报socket方式下,由于本地socket并没有与远端机器建立连接,所以在发送数据时应指明目的地址,sendto()函数原型为:
int sendto(int sockfd, const void *msg,int len,unsigned int flags,
const struct sockaddr *to, int tolen);
该函数比send()函数多了两个参数,to表示目地机的IP地址和端口号信息,而tolen常常被赋值为sizeof (struct sockaddr)。Sendto 函数也返回实际发送的数据字节长度或在出现发送错误时返回-1。
Recvfrom()函数原型为:
int recvfrom(int sockfd,void *buf,int len,unsigned int flags,struct sockaddr *from,int *fromlen);
from是一个struct sockaddr类型的变量,该变量保存源机的IP地址及端口号。fromlen常置为sizeof (struct sockaddr)。当recvfrom()返回时,fromlen包含实际存入from中的数据字节数。Recvfrom()函数返回接收到的字节数或当出现错误时返回-1,并置相应的errno。
应注意的一点是,当你对于数据报socket调用了connect()函数时,你也可以利用send()和recv()进行数据传输,但该socket仍然是数据报socket,并且利用传输层的UDP服务。但在发送或接收数据报时,内核会自动为之加上目地和源地址信息。
Close()和shutdown()——结束数据传输
当所有的数据操作结束以后,你可以调用close()函数来释放该socket,从而停止在该socket上的任何数据操作:close(sockfd);
你也可以调用shutdown()函数来关闭该socket。该函数允许你只停止在某个方向上的数据传输,而一个方向上的数据传输继续进行。如你可以关闭某socket的写操作而允许继续在该socket上接受数据,直至读入所有数据。
int shutdown(int sockfd,int how);
Sockfd的含义是显而易见的,而参数 how可以设为下列值:
·0-------不允许继续接收数据
·1-------不允许继续发送数据
·2-------不允许继续发送和接收数据,均为允许则调用close ()
shutdown在操作成功时返回0,在出现错误时返回-1(并置相应errno)。
DNS——域名服务相关函数
由于IP地址难以记忆和读写,所以为了读写记忆方便,人们常常用域名来表示主机,这就需要进行域名和IP地址的转换。函数gethostbyname()就是完成这种转换的,函数原型为:
struct hostent *gethostbyname(const char *name);
函数返回一种名为hosten的结构类型,它的定义如下:
struct hostent {
char *h_name; /* 主机的官方域名 */
char **h_aliases; /* 一个以NULL结尾的主机别名数组 */
int h_addrtype; /* 返回的地址类型,在Internet环境下为AF-INET */
int h_length; /*地址的字节长度 */
char **h_addr_list; /* 一个以0结尾的数组,包含该主机的所有地址*/
};
#define h_addr h_addr_list[0] /*在h-addr-list中的第一个地址*/
当 gethostname()调用成功时,返回指向struct hosten的指针,当调用失败时返回-1。当调用gethostbyname时,你不能使用perror()函数来输出错误信息,而应该使用herror()函数来输出。
面向连接的客户/服务器代码实例
这个服务器通过一个连接向客户发送字符串""Hello,world! ""。只要在服务器上运行该服务器软件,在客户端运行客户软件,客户端就会收到该字符串。
该服务器软件代码见程序1:
#include stdio.h
#include stdlib.h
#include errno.h
#include string.h
#include sys/types.h
#include netinet/in.h
#include sys/socket.h
#include sys/wait.h
#define MYPORT 3490 /*服务器监听端口号 */
#define BACKLOG 10 /* 最大同时连接请求数 */
main()
{
intsock fd,new_fd; /* 监听socket: sock_fd,数据传输socket: new_fd *
/
struct sockaddr_in my_addr; /* 本机地址信息 */
struct sockaddr_in their_addr; /* 客户地址信息 */
n_size;
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { /*错误检测
*/
perror(""socket""); exit(1); }
my_addr.sin_family=AF_INET;
my_addr.sin_port=htons(MYPORT);
my_addr.sin_addr.s_addr = INADDR_ANY;
bzero(&(my_addr.sin_zero),8);
if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockad
dr))
== -1) {/*错误检测*/
perror(""bind""); exit(1); }
if (listen(sockfd, BACKLOG) == -1) {/*错误检测*/
perror(""listen""); exit(1); }
while(1) { /* main accept() loop */
sin_size = sizeof(struct sockaddr_in);
if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr,
&sin_size)) == -1) {
perror(""accept""); continue; }
printf(""server: got connection from %s "",
inet_ntoa(their_addr.sin_addr));
if (!fork()) { /* 子进程代码段 */
if (send(new_fd, ""Hello, world! "", 14, 0) == -1)
perror(""send""); close(new_fd); exit(0); }
close(new_fd); /* 父进程不再需要该socket */
waitpid(-1,NULL,WNOHANG) > 0 /*等待子进程结束,清除子进程所占用资源
*/
}
}
(程序1)
服务器首先创建一个Socket,然后将该Socket与本地地址/端口号捆绑,成功之后就在相应的socket上监听,当accpet捕捉到一个连接服务请求时,就生成一个新的socket,并通过这个新的socket向客户端发送字符串""Hello,world! "",
然后关闭该socket。
fork()函数生成一个子进程来处理数据传输部分,fork()语句对于子进程返回的值为0。所以包含fork函数的if语句是子进程代码部分,它与if语句后面的父进程代码部分是并发执行的。
客户端软件代码部分见程序2:
#includestdio.h
#include stdlib.h
#include errno.h
#include string.h
#include netdb.h
#include sys/types.h
#include netinet/in.h
#include sys/socket.h
#define PORT 3490
#define MAXDATASIZE 100 /*每次最大数据传输量 */
int main(int argc, char *argv[])
{
int sockfd, numbytes;
char buf[MAXDATASIZE];
struct hostent *he;
struct sockaddr_in their_addr;
if (argc != 2) {
fprintf(stderr,""usage: client hostname ""); exit(1); }
if((he=gethostbyname(argv[1]))==NULL) {
herror(""gethostbyname""); exit(1); }
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror(""socket""); exit(1); }
their_addr.sin_family=AF_INET;
their_addr.sin_port=htons(PORT);
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
bzero(&(their_addr.sin_zero),8);
if (connect(sockfd, (struct sockaddr *)&their_addr,
sizeof(struct sockaddr)) == -1) {/*错误检测*/
perror(""connect""); exit(1); }
if ((numbytes=recv(sockfd, buf, MAXDATASIZE, 0)) == -1) {
perror(""recv""); exit(1); }
buf[numbytes] = ;
printf(""Received: %s"",buf);
close(sockfd);
return 0;
}
(程序2)
客户端代码相对来说要简单一些,首先通过服务器域名获得其IP地址,然后创建一个socket,调用connect函数与服务器建立连接,连接成功之后接收从服务器发送过来的数据,最后关闭socket,结束程序。
无连接的客户/服务器程序的在原理上和连接的客户/服务器是一样的,两者的区别在于无连接的客户/服务器中的客户一般不需要建立连接,而且在发送接收数据时,需要指定远端机的地址。
关于阻塞(blocking)的概念和select()函数
当服务器运行到accept语句时,而没有客户连接服务请求到来,那么会发生什么情况?这时服务器就会停止在accept语句上等待连接服务请求的到来;同样,当程序运行到接收数据语句时,如果没有数据可以读取,则程序同样会停止在接收语句上。这种情况称为blocking。但如果你希望服务器仅仅注意检查是否有客户在等待连接,有就接受连接;否则就继续做其他事情,则可以通过将Socke设置为非阻塞方式来实现:非阻塞socket在没有客户在等待时就使accept调用立即返回 。
#include unistd.h
#include fcntl.h
. . . . ; sockfd = socket(AF_INET,SOCK_STREAM,0);
fcntl(sockfd,F_SETFL,O_NONBLOCK); . . . . .
通过设置socket为非阻塞方式,可以实现“轮询”若干Socket。当企图从一个没有数据等待处理的非阻塞Socket读入数据时,函数将立即返回,并且返回值置为-1,并且errno置为EWOULDBLOCK。但是这种“轮询”会使CPU处于忙等待方式,从而降低性能。考虑到这种情况,假设你希望服务器监听连接服务请求的同时 从已经建立的连接读取数据,你也许会想到用一个accept语句和多个recv()语句,但是由于accept及recv都是会阻塞的,所以这个想法显然不会成功。
调用非阻塞的socket会大大地浪费系统资源。而调用select()会有效地解决这个问题,它允许你把进程本身挂起来,而同时使系统内核监听所要求的一组文件描述符的任何活动,只要确认在任何被监控的文件描述符上出现活动,select()调用将返回指示该文件描述符已准备好的信息,从而实现了为进程选出随机的变化,而不必由进程本身对输入进行测试而浪费CPU开销。Select函数原型为:
int select(int numfds,fd_set *readfds,fd_set *writefds,fd_set *ex
ceptfds,struct timeval *timeout);
其中readfds、writefds、exceptfds分别是被select()监视的读、写和异常处理的文件描述符集合。如果你希望确定是否可以从标准输入和某个socket描述符读取数据,你只需要将标准输入的文件描述符0和相应的sockdtfd加入到readfds集合中;numfds的值是需要检查的号码最高的文件描述符加1,这个例子中numfds的值应为sockfd+1;当select返回时,readfds将被修改,指示某个文件描述符已经准备被读取,你可以通过FD_ISSSET()来测试。为了实现fd_set中对应的文描述符的设置、复位和测试,它提供了一组宏:
FD_ZERO(fd_set *set)----清除一个文件描述符集;
FD_SET(int fd,fd_set *set)----将一个文件描述符加入文件描述符集中;
FD_CLR(int fd,fd_set *set)----将一个文件描述符从文件描述符集中清除 ;
FD_ISSET(int fd,fd_set *set)----试判断是否文件描述符被置位。
Timeout参数是一个指向struct timeval类型的指针,它可以使select()在等待timeout长时间后没有文件描述符准备好即返回。struct timeval数据结构为:
struct timeval {
int tv_sec; /* seconds */
int tv_usec; /* microseconds */
};
我们通过程序3来说明:
#include sys/time.h
#include sys/types.h
#include unistd.h
#define STDIN 0 /*标准输入文件描述符*/
main()
{
struct timeval tv;
fd_set readfds;
tv.tv_sec = 2;
tv.tv_usec = 500000;
FD_ZERO(&readfds);
FD_SET(STDIN,&readfds);
/* 这里不关心写文件和异常处理文件描述符集合 */
select(STDIN+1, &readfds, NULL, NULL, &tv);
if (FD_ISSET(STDIN, &readfds)) printf(""A key was pressed! "");
else printf(""Timed out. "");
}
(程序3)
select()在被监视端口等待2.5秒钟以后,就从select返回